Impact of submesoscale processes on dynamics of phytoplankton filaments

نویسندگان

  • Igor Shulman
  • Bradley Penta
  • James Richman
  • Gregg Jacobs
  • Stephanie Anderson
  • Peter Sakalaukus
چکیده

Abstract In Monterey Bay, CA, during northwesterly, upwelling favorable winds, the development of a southward flowing cold jet along the entrance to the Bay is often observed. This dense cold jet separates warm waters of the anticyclonic circulation offshore from the water masses inside the Bay. Interactions between the cold jet and the offshore anticyclonic circulation generate ageostrophic secondary circulation (ASC) cells due to submesoscale processes as, for example, flow interaction with the development of surface frontogenesis and nonlinear Ekman pumping. Based on observations and modeling studies, we evaluate the impact of these submesoscale processes on the formation of chlorophyll a filaments during late springearlier summer, and late summer time frames. We show that during the late summer time frame, ASC leads to the development of filaments with high values of chlorophyll a concentration along the edge of the cold jet–in contrast to the earlier summer time, when the ASC mixes phytoplankton much deeper to the area below of the euphotic depth, and chlorophyll a filaments are 3–4 times weaker.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts

This project is part of the DRI on Scalable Lateral Mixing and Coherent Turbulence that aims to characterize lateral mixing in the ocean on scales of 10m-10 km, the submesoscales. Lateral mixing at the submesoscales is not accounted for in present-day ocean models. This deficiency is a potential source of error in the numerical prediction of the distribution of temperature, salt, nutrients, phy...

متن کامل

Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts

This project is part of the DRI on Scalable Lateral Mixing and Coherent Turbulence that aims to characterize lateral mixing in the ocean on scales of 10m-10 km, the submesoscales. Lateral mixing at the submesoscales is not accounted for in present-day ocean models. This deficiency is a potential source of error in the numerical prediction of the distribution of temperature, salt, nutrients, phy...

متن کامل

Dynamics of phytoplankton blooms in turbulent vortex cells.

Turbulence and coherent circulation structures, such as submesoscale and mesoscale eddies, convective plumes and Langmuir cells, play a critical role in shaping phytoplankton spatial distribution and population dynamics. We use a framework of advection-reaction-diffusion equations to investigate the effects of turbulent transport on the phytoplankton population growth and its spatial structure ...

متن کامل

Phytoplankton growth and microzooplankton grazing in the Homa Lagoon (İzmir Bay, Turkey)

 Phytoplankton growth and microzooplankton grazing were investigated at one station in the Homa Lagoon from February to January in 2006-2007. Our results showed significant seasonal variations in phytoplankton dynamics. Microzooplankton was mainly composed of dinoflagellates and tintinnid ciliates and nauplii. Microzooplankton grazing increased with increasing of temperature. Grazing ra...

متن کامل

Phytoplankton growth and microzooplankton grazing in the Homa Lagoon (İzmir Bay, Turkey)

 Phytoplankton growth and microzooplankton grazing were investigated at one station in the Homa Lagoon from February to January in 2006-2007. Our results showed significant seasonal variations in phytoplankton dynamics. Microzooplankton was mainly composed of dinoflagellates and tintinnid ciliates and nauplii. Microzooplankton grazing increased with increasing of temperature. Grazing rate was ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015